By 2050, more than 60 percent of the world’s population is expected to live in urban areas. Cities are facing this rapid rise in population while also confronting the effects of climate change, economic restructuring, ageing populations, and pressures on public finances. Therefore, it is essential to make large cities more sustainable, efficient, and livable whilst ensuring safety, security, and health.
Many technologies are already available or under development to help make this possible. Sensors and reporting systems monitor a wide range of events from traffic flows to water leaks, from air pollution to energy consumption, from crime reports to parking volume. These various data sets are supplemented by crowd-sourced inputs, as residents flag potholes or construction noise through their smartphones, while cars, home appliances, and all sorts of other connected devices (collectively known as “the Internet of Things”) automatically collect and relay still more data in the background.
Information and communication technologies store, analyze, and display “big” data, which local governments can use to manage assets and resources more efficiently while also becoming more transparent, interactive, and responsive. Cities that systematically deploy these technologies to connect every layer, from the air to the street to underground, to improve the lives of their citizens and communication with them are known as “smart cities.”
Why Location Accuracy Matters
People want to know not just when something is happening but also where. Fortunately, an increasing proportion of just about every piece of data in a smart city is tagged with its spatial coordinates, which are collected mostly by global navigation satellite systems (GNSS) receivers. GNSS receivers—from low-precision ones in smartphones and car navigation systems to high-precision ones used for professional applications—play an essential, though unseen, role in improving life in a smart city.
Location accuracy requirements can vary significantly depending on the application: an autonomous vehicle’s positioning system needs to be accurate within about 10 cm (four inches) to keep it safely within its lane on the highway, and engineering projects such as road and utility construction require solutions with better than 2.5 cm (sub-inch) accuracy.