• Home
  • About
    • About PBD
    • What Are Geospatial Technologies?
    • Matteo Luccio’s Bio
    • Conferences
    • Our Name
  • Topics
    • 3D imaging
    • Aerial photography
    • Bathymetry
    • Building Information Modeling (BIM)
    • CAD
    • Energy
    • Cadaster
    • Environment
    • Geodesy
    • GIS
    • LiDAR
    • Mapping
    • Navigation
    • Open source software
    • Other
    • Photogrammetry
    • Precision agriculture
    • Radar
    • Remote sensing
    • Satellite imaging
    • Satellite navigation
    • Seismology
    • Sensors
    • Surveying
    • UAS
    • Tracking
  • Magazines
    • Apogeo Spatial
    • ArcNews
    • ArcWatch
    • CE News
    • Earth Imaging Journal
    • GEOInformatics
    • GeoWorld
    • GIM International
    • Heights
    • Informed Infrastruct.
    • Imaging Notes
    • Point of Beginning
    • Prof. Surveyor Mag.
    • Sensors & Systems
    • Septentrio Insights
    • The American Surveyor
    • xyHt
  • Formats
    • Feature articles
    • Short articles
    • Interviews
    • News items
    • Other
  • All
  • Clients
  • Tips
    • Gripes
    • Tips
  • Contact Us
 

Tethered Aerostats Provide Another Option in the Sky

Posted by: Matteo    Tags:      Posted date:  October 31, 2014  |  No comment



Geospatial professionals are able to choose from an increasingly wide array of platforms on which to deploy ever more accurate and smaller sensors. Lately, unmanned aerial vehicles (UAVs) have been getting most of the buzz (pun intended). However, in many situations, high-tech versions of one of the earliest flying devices, tethered aerostats, are a better option. Like UAVs, they are much cheaper per flight hour to operate than manned aircraft; however, they can carry a much larger payload than small UAVs, can stay up for a much longer time, and are legal to use in the U.S.

I discussed tethered aerostats with Craig Laws, senior product manager of aerostats and military decoys at Raven Aerostar. The company manufactures aerostats ranging in size from 250 cubic feet (about twice the size of a car) to 120,000 cubic feet (about the size of a high school gymnasium) with a payload capacity ranging from 5 pounds up to 1,500 pounds. They can generally operate with wind speeds of up to 50 knots. “It really doesn’t matter that much what the payload is. It is all about size, weight, and power” or SWAP.

Read more…



Want to say something?





  Cancel Reply


6 + = eight

« From Shore to Floor
Survey. Dredge. Repeat. Keeping the Columbia River Navigable »






 

Copyright (c) 2012 by Pale Blue Dot, LLC / For information write to matteo@palebluedotllc.com